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Abstract One key strategy for the identification of plant
genes required for mycorrhizal development is the use of
plant mutants affected in mycorrhizal colonisation. In this
paper, we report a new Medicago truncatula mutant
defective for nodulation but hypermycorrhizal for symbio-
sis development and response. This mutant, called B9,
presents a poor shoot and, especially, root development
with short laterals. Inoculation with Glomus intraradices
results in significantly higher root colonisation of the
mutant than the wild-type genotype A17 (+20% for total
root length, +16% for arbuscule frequency in the colonised
part of the root, +39% for arbuscule frequency in the total
root system). Mycorrhizal effects on shoot and root biomass
of B9 plants are about twofold greater than in the wild-type
genotype. The B9 mutant of M. truncatula is characterised
by considerably higher root concentrations of the phytoes-
trogen coumestrol and by the novel synthesis of the
coumestrol conjugate malonyl glycoside, absent from roots
of wild-type plants. In conclusion, this is the first time that
a hypermycorrhizal plant mutant affected negatively for
nodulation (Myc++, Nod −/+ phenotype) is reported. This
mutant represents a new tool for the study of plant genes
differentially regulating mycorrhiza and nodulation symbio-
ses, in particular, those related to autoregulation mechanisms.
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Introduction

Currently, much of the research on arbuscular mycorrhizal
(AM) interactions is focussed on plant genes required for
mycorrhizal development. One key tool for these studies is
the use of plants mutated for genes affecting mycorrhizal
colonisation. Many AM plant mutants have been isolated
by chemical or physical mutagenesis since the first
mycorrhiza-deficient mutants (noted Myc−) were reported
for Pisum sativum and Vicia faba (Duc et al. 1989). Apart
from Myc− mutants identified in tomato, (Barker et al.
1998; David-Schwartz et al. 2001; David-Schwartz et al.
2003) and in petunia (Reddy et al. 2007), the majority of
Myc− mutants have been reported for legumes previously
selected for nodulation deficiency, and common genes
involved in both rhizobial and mycorrhizal symbioses have
been identified (Marsh and Schultze 2001; Parniske 2004).
In addition, hypermycorrhizal (Myc++) phenotypes have
been found among supernodulating and nitrate tolerant
mutants of P. sativum, M. truncatula, Glycine max, and
Lotus japonicus (Morandi et al. 2000; Shrihari et al. 2000;
Solaiman et al. 2000).

Phenolic compounds are known to play a role in signalling
between plants and their microsymbionts, (Siqueira et al.
1991a; Phillips and Tsai 1992; Morandi 1996; Vierheilig et
al. 1998). In the case of AM interactions, flavonoid/
isoflavonoids have been shown to influence in vitro spore
germination, growth of germination hyphae (Tsai and
Phillips 1991; Bécard et al. 1992; Morandi et al. 1992;
Scervino et al. 2005a, b) and AM colonisation (Siqueira et al.
1991b; Morandi 1996; Vierheilig et al. 1998; Scervino et al.
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2005c; Scervino et al. 2007). In particular, the isoflavonoid
coumestrol, a plant phytoestrogen quite common in legumes,
has been shown to accumulate to significant levels in
mycorrhizal roots and to stimulate growth of germination
hyphae in Gigaspora margarita (Morandi et al. 1984;
Morandi et al. 1992).

The model legume Medicago truncatula has received
consistent attention for the selection of nodulation and AM
mutants (Sagan et al. 1995; Catoira et al. 2000; Morandi et
al. 2000; Penmetsa and Cook 2000; Morandi et al. 2005). In
this paper, we report isolation and characterisation of an
EMS generated M. truncatula mutant having a poorly
developed root system and which presents a novel hyper-
mycorrhizal, nodulation-defective phenotype. This mutant is
characterised by an unusually high root content in coumes-
trol isoflavonoid, and by the presence of a root coumestrol
conjugate not previously reported in M. truncatula.

Materials and methods

Biological material

A mutant plant population was generated from M. trunca-
tula (Gaertn.) line A17 of the variety Jemalong using
0.15% ethyl methane-sulphonate (EMS; Le Signor et al.,
submitted). Following EMS treatment, the M1 seeds were
sown and M2 seeds were harvested from individual plants.
One M2 plant was grown from each M1 plant (Single Seed
Descent design) and the range of mutations generated was
defined from seed and seedling phenotypes in the M2
generation (albino frequency, percentage of chlorotic
phenotypes and percentage of M2 embryo abortion).
Screening for a mycorrhizal phenotype was set up using
M2 seed batches from 300 families where more than 100
seeds were obtained. Twenty seeds from each selected seed
batch were scarified for 2 min in 98% sulphuric acid, rinsed
five times in water and surface disinfected for 10 min in
3.5% calcium hypochlorite. After rinsing five times in
water, seeds were transferred to moist filter paper in Petri
dishes and left to germinate for 4 days in the dark at 4°C.
Seedlings were then transferred to room temperature for
1 day before transplanting to 20 ml growth substrate
composed of 35% of a commercial Glomus intraradices
inoculum (Agrauxine, Biorize SA) and 65% clay loam soil.
Plants were raised in a growth chamber (16-h photoperiod,
350 µmol m2 s−1 irradiation, 70% day and 80% night
relative humidity, 22°C day and 19°C night), watered daily
with osmosed water and harvested 3 weeks later. Root
systems were washed under tap water and stained with
trypan blue (Phillips and Hayman 1970). For each plant, the
entire root system was observed under a stereomicroscope
to evaluate mycorrhizal phenotype and root morphology.

No Myc− phenotype was found amongst 3,000 plants
observed (ten plants per mutant line), but plants from one
mutant line presented a poorly developed root system and
intense AM colonisation. This line was called “B9” and
was selfed to obtain a M3 generation progeny for further
investigations.

Growth of wild-type and B9 mutant genotypes of M.
truncatula

The two genotypes, A17 and B9 (M3), were inoculated or
not with G. intraradices. Seedlings germinated as described
above were transferred to 100 ml of a substrate composed
of a mixture of 3/4 (v/v) gamma irradiated clay loam soil
and 1/4 (v/v) zeolite. In the G. intraradices-inoculated
treatments, zeolite was replaced by the zeolite-based
commercial inoculum. Each non-inoculated plant received
1 ml of a water filtrate of the mycorrhizal inoculum (100 g
inoculum filtered with 100 ml distilled water) at the
beginning of the experiment, in order to provide the same
bacterial environment as inoculated ones. For the wild-type
A17 genotype, ten plants were grown per treatment: five for
isoflavonoid analysis and five for estimation of AM
colonisation. For the mutant line B9, 20 plants were grown
per treatment: five replicates, each consisting of roots
pooled from three plants, were used for isoflavonoid
analyses, and the remaining five plants were used for
estimation of AM colonisation. Plants were grown as
described above, and watered three times a week with
20 ml Long Ashton nutrient solution (Hewitt 1966),
modified in order to have a one-tenth phosphate concen-
tration in the form of NaH2PO4. Plants were harvested after
5 weeks’ growth. Roots were washed under tap water,
separated from the shoot, the two parts weighed (fresh
material), and roots immersed in liquid nitrogen and stored
at −80°C until analysis.

Evaluation of mycorrhizal and nodulation phenotypes

Root systems were stained with trypan blue, as described
above, cut into 1-cm fragments and thirty randomly
collected for estimation of mycorrhizal development. A
stereomicroscope at ×40 magnification was used to evaluate
mycorrhizal root length and percentage of cortical cells
containing arbuscules in the colonised part and in the total
root system (Morandi et al. 2005).

To assess the nodulation phenotype, B9 (M3) seedlings
were planted into 200-ml pots containing sterile clay loam
soil and inoculated with Sinorhizobium meliloti strain 2011.
Plants were watered every 2 days with Long Ashton
nutrient solution without nitrogen (Ca (NO3)2 and KNO3

were replaced by CaCl2 and KCl, respectively). Five
replicate plants were harvested after 4, 6 and 8 weeks
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growth, roots washed under tap water and observed visually
for nodulation.

Isoflavonoid analyses

Frozen root samples were ground in liquid nitrogen and
then extracted with 95% ethanol (10 ml g−1 fresh material)
under sonication for 1 h at room temperature. The extract
was filtered, evaporated to dryness under vacuum and the
dry extract redissolved in methanol/water (8/2v/v) to obtain
a final concentration corresponding to 4 g fresh material/ml.
The methanol extract was analysed by HPLC in a Beckman
Gold system consisting of a 507e autosampler module, a
126 solvent delivery system module, a reverse-phase C18
column (ultrasphere IP 4.6×250 mm), a 168 diode array
detector module and Gold version 8 data analysis software.
The solvent system was a mixture of H2O/1.5% ortho-
phosphoric acid (Sigma Aldrich; solvent A) and acetonitrile
(Sigma Aldrich; solvent B) delivered at a flow rate of 1 ml
min−1 with the following gradient: t=0 min, B=0%; t=
42 min, B=70%; t=47 min, B=100%; t=52 min, B=0%. A
coumestrol standard (Sigma Aldrich; 10 µg ml−1) was used
as external injection under the same HPLC conditions for
quantification purposes (given as microgram per gram of
fresh material).

Coumestrol conjugate purification and characterisation

HPLC analyses revealed the presence, in roots of the B9
mutant, of a compound (RT=23.1 min) absent from A17
roots. Due to its similar UV spectra to coumestrol, it was
presumed to be a coumestrol conjugate and its character-
isation was undertaken. Samples of B9 extracts remaining
after HPLC analysis were bulked together and concentrated
to a unique sample in order to purify the coumestrol
conjugate. To collect the corresponding peak by HPLC,
1.5% phosphoric acid in solvent A was replaced by 1%
acetic acid. All collected fractions were bulked together,
solvents evaporated to dryness under vacuum and the dry
fraction redissolved in 200 µl 80% MeOH. Twenty micro-
litres were used for standard HPLC analysis, and the
remaining fraction was heated 16 h at 80°C in a sealed
vial to determine if the conjugate was malonylated. This
procedure converts flavonoid glycoside malonates into their
glycosides without the production of other derivatives (Lin
et al. 2000). Twenty microlitres of the resulting solution
was reanalysed by standard HPLC, and the rest was
concentrated under vacuum to eliminate methanol. The
solution was adjusted to 200 µl with water, and hydrolysis
was performed in a sealed vial using ß-glucosidase (Sigma
Aldrich) for 8 h at 37°C (Mabry et al. 1970). Water was
then evaporated under vacuum and the sample redissolved
in 80% MeOH for HPLC analysis as described above.

Statistical analysis

All data were analysed by ANOVA, after arcsin √
transformation for percentages and mean values were
compared with the Tukey–Kramer test (P≤0.05).

Results

Growth and symbiotic phenotype of the B9 mutant

The B9 mutant presented clearly poorer growth than the
wild-type A17 genotype (Fig. 1). The root system was
particularly poorly developed, as shown by the higher
shoot/root ratio (nearly three times) for B9 as compared to
A17 (Table 1). The morphology of the root system was
characterised by short lateral root development. Total
weight (fresh material) of B9 mutant was about 13 and
five times lower than A17 genotype for non G. intra-
radices-inoculated and G. intraradices-inoculated plants,
respectively (Table 1).

Five weeks after inoculation with G. intraradices, B9
root colonisation was statistically higher than in wild-type
A17 plants for all the three parameters evaluated (Table 1):
+20% for mycorrhizal root length intensity, +16% for the
arbuscule frequency in the colonised parts of the root and
+39% for the arbuscule frequency in the total root system.
Although normal pink nodules were visible on A17 roots

A17

B9

Fig. 1 Wild-type A17 and mutant B9 Medicago truncatula cultivated
during 5 weeks in a substrate of 75% disinfected clay loam soil and
25% zeolite

Mycorrhiza (2009) 19:435–441 437



4 weeks after S. meliloti inoculation, none of the root
systems of B9 plants had visible nodules after 4 and
6 weeks. Only a few white nodules were observed on two
out of five plants of B9 after 8 weeks’ growth, character-
ising a late, poorly nodulating phenotype (Nod−/+).

A much stronger mycorrhizal growth stimulating effect
was observed on B9 than on the wild-type A17 genotype
(Table 1): the M/NM ratio for shoots and roots was more
than twofold higher for B9 than for A17.

This hypermycorrhizal, poorly nodulating phenotype of
the mutant B9 was homogeneous between plants in a
progeny and between two successive generations, which
indicates that this trait is genetically determined and that the
mutation could be fixed after one selfing generation.

Isoflavonoid occurrence in roots

Isoflavonoid profiles of mutant B9 and wild-type A17
genotypes were analogous (data not shown) in 5-week old
M. truncatula roots. Exceptions were (a) coumestrol which
had a considerably higher concentration in B9 than in A17
roots, and (b) a coumestrol conjugate (CG) which was
detected only in mutant B9 roots. Coumestrol concentrations
were about 14 and 22 times greater in B9 roots than in A17
roots, in mycorrhizal and non-mycorrhizal plants, respec-
tively (Table 1). G. intraradices colonisation induced a
significant increase (about twofold) in root coumestrol
concentration in A17 roots, whilst in the mutant B9 the
increase was not statistically significant. The amount of CG,
given in coumestrol equivalent, was significantly lower
(−20%) in mycorrhizal B9 roots than in non-mycorrhizal
ones. After HPLC purification of CG, heating at 80°C for
16 h gave a compound with a retention time (RT) of

20.5 min, 2.6 min lower than CG (RT=23.1 min). This
indicates that CG was malonylated (Lin et al. 2000).
Hydrolysis of the demalonlylated CG using ß-glucosidase
gave a compound with the same HPLC characteristics (RT=
28.4 min) and UV spectra as pure standard coumestrol
confirming that CG was a glycosylated conjugate of the
aglycone coumestrol.

Discussion

This paper reports a novel hypermycorrhizal (Myc++)
mutant of M. truncatula which is hyper-responsive to AM
and defective for nodulation. In contrast to previously
reported Myc++ mutants which all express a Nod++

phenotype (Morandi et al. 2000; Shrihari et al. 2000;
Solaiman et al. 2000), the new B9 mutant has a late, poorly
nodulating, ineffective phenotype (Nod−/+). The existence
of Myc++ Nod++ mutants has led to the suggestion that
common mechanisms of autoregulation are shared for AM
colonisation and nodulation of legume roots (Vierheilig
2004; Vierheilig et al. 2008). This hypothesis was rein-
forced by the observation of loss of mycorrhizal autoregu-
lation in a hypernodulating mutant of soybean (Meixner et
al. 2005). The Myc++ character in the M. truncatula mutant
B9 appears to depend on a mechanism which is indepen-
dent of nodulation. However, gene mutation is associated
with a particular root morphogenesis since it results in a
strongly reduced growth (compared to the wild type) and a
limited lateral root ramification. This poor development of
the root system of the B9 mutant, which may reflect an
impaired C supply, will lower the plants' capacity to absorb
mineral nutrients rendering it more dependent on the

A17NM A17M B9NM B9M

Fresh mass

roots 4.18 c 4.61 c 0.18 a 0.43 b

shoots 2.78 c 4.10 d 0.33 a 1.05 b

total 6.96 c 8.72 d 0.51 a 1.48 b

Shoot/root 0.68 a 0.89 b 1.83 c 2.44 d

M/NM biomass

roots 1.10 a 2.39 b

shoots 1.48 a 3.18 b

total 1.25 a 2.90 b

AM colonisation parameters

L (%) 69 a 83 b

AC (%) 74 a 86 b

AT (%) 51 a 71 b

Root isoflavonoid contents

coumestrol (µg g−1 fresh mass) 0.87 a 1.65 b 19.1 c 23.4 c

CG (µg CE g−1 fresh mass) nd nd 1.2 b 0.86 a

Table 1 Growth, AM colonisa-
tion parameters (L=mycorrhizal
root length intensity, AC=
arbuscule frequency in colon-
ised parts of the root system,
AT=arbuscule frequency in the
total root system) and root iso-
flavonoid [coumestrol and
coumestol conjugate (CG)]
content of wild-type A17 and
B9 mutant Medicago truncatula,
5 weeks after inoculation (M)
or not (NM) with Glomus
intraradices

Means in each line followed by
different letters are significantly
different at P≤0.05 (Tukey–
Kramer statistical analysis)

nd not detected, CE coumestrol
equivalent
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mycorrhizal symbiosis, which is reflected in the greater
mycorrhizal effect on the growth of B9 than of wild-type
M. truncatula.

An interesting feature of B9 mutant roots is the high
concentration of the isoflavonoid coumestrol which reaches
up to 22-fold in roots of wild-type M. truncatula.
Coumestrol is a phytoestrogen with strong estrogenic
activities (Tinwell et al. 2000) which can be involved in
the control of plant pathogens (Lyon and Wood 1975; Feet
and Osman 1982; O'Neill 1996). In symbiotic interactions,
it has been reported to be a Nod-gene-inducer for
Bradyrhizobium japonicum (Kosslak et al. 1987) but a
Nod-gene-inhibitor for S. meliloti (Zuanazzi et al. 1998), so
that the low and late nodulation of the B9 mutant of M.
truncatula could be due, at least in part, to the greater root
concentration of coumestrol. Also, coumestrol levels
increased in the mycorrhizal roots of M. truncatula, which
is consistent with that previously reported for soybean
(Morandi et al. 1984) or Medicago roots (Harrison and
Dixon 1993). Coumestrol has been shown to stimulate
growth of hyphae from germinating spores of the AM
fungus G. margarita (Morandi et al. 1992). It can therefore
be hypothesised that the high level of coumestrol in B9
roots could contribute to the increased mycorrhizal coloni-
sation observed in this mutant.

The B9 mutant is also characterised by the presence of a
coumestrol conjugate (CG) absent from the wild-type A17
genotype. After HPLC purification, heating at 80°C and
hydrolysis with ß-glucosidase, we can conclude that CG is a
coumestrol malonyl glycoside. This is the first report of such a
coumestrol conjugate in M. truncatula, although it has
previously been described in roots of Medicago sativa (Tiller
et al. 1994). The advantage for plants to form flavonoid
glycoside malonates is to sequester less soluble and more
toxic flavonoid aglycons. In addition, they can provide a
preformed pool of antimicrobial compounds which can be
rapidly released following pathogen attack (Graham et al.
1990; Graham and Graham 1991; Harborne 1994). The
coumestrol glycoside present in the B9 mutant is associated
with a high concentration of root coumestrol, compared to
the wild-type genotype of M. truncatula. This high level of
coumestrol may induce, as part of a regulation mechanism,
synthesis of the coumestrol malonyl glycoside in order to
better solubilise or store a part of the coumestrol produced.
The fact that AM colonisation reduces accumulation of the
CG in roots could reflect hydrolysis of the coumestrol
glycoside through activation of a ß-glucosidase, or inhibition
of a glycosyltransferase and/or malonyltransferase involved
in the biosynthesis of CG (Hsieh and Graham 2001; Modolo
et al. 2007). Increased expression, rather than down-
regulation of a glycosyltransferase and a malonyltransferase
gene has been reported in mycorrhizal M. truncatula roots
(Manthey et al. 2004; Lohse et al. 2005).

In conclusion, the newly described Myc++, Nod−/+

mutant of M. truncatula constitutes a novel tool for the
study of AM-regulated symbiotic plant genes, independent
of those implicated in nodulation. Further research on the
carbohydrate availability to the root system, dynamics of
root coumestrol accumulation and early stages of bacterial
and fungal interactions will help to better understand the
mechanisms involved in symbiotic alterations in the B9
mutant. In addition, the mechanisms modulating coumestrol
and glycoside derivative synthesis in this plant mutant merit
investigation in order to evaluate the biological role of these
compounds in an autoregulation process promoting AM
interactions.
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